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ABSTRACT 

On the basis of mechanical tests and metallographic studies, strainrange 

partitioned lives were predicted by introducing stress-strain materials 

parameters into the Universal Slopes Equation. This was the result of - 
I 
cj 
I-. correlating fatigue damage mechanisms and deformation mechanisms operating at 

W elevated temperatures on the basis of observed mechanical and microstructural 
rn 
0 
I 

behavior. Correlation between high-temperature fatigue and stress-strain 

properties for nickel-base superalloys and stainless steel substantiated the 

method. Parameters which must be evaluated for PP- and CC- life are the 

maximum stress achievable under entirely plastic and creep conditions 

respectively and corresponding inelastic strains, and the elastic modulus. 

For plasticity/creep interaction conditions (PC and CP) two more pairs of 

stress-strain parameters must be ascertained 

INTRODUCTION 

Material response in high-temperature turbomachinery i s  controlled by 

deformation processes such as time-dependent creep and time-independent 
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plasticity during, either tension or compression straining in the fatigue 

cycle. Success in estimating low-cycle fatigue life under such strongly 

rate-dependent deformation has varied considerably (Refs. 1 to 4 ) .  

One of the more successful phenomenological methods for predicting 

high-temperature, low-cycle fatigue life is the strainrange partitioning 

approach, which was developed at NASA by Manson, Halford, and Hirschberg (Ref. 

5 > ,  and has become a viable engineering design tool (Saltsman and Halford 

(Ref. 6)). The procedure involves the experimental determination of the four 

basic life relationships, resulting from the four possible combinations of 

plastic or creep strainrange in the tensile or compressive halves of the 

fatigue cycle* for a given material, and their use in conjunction with an 

interaction damage rule to predict cyclic lives. 

The present work was undertaken in order to enhance understanding of the 

mechanisms which are responsible for observed material response, and thereby 

achieve a prediction model. The research required analysis of strain-cyclic 

mechanical response in the light of monotonic creep and plasticity response, 

and metallographic determination of the plasticity and creep damage mechanisms 

operating during SRP fatigue loading. Finally a method for the estimation of 

the strain-life relations could be developed, based on the mechanical and 

microstructural response observed. 

*Throughout the discussion strainrange partitioning notation is used, 
namely: 

Subscripts Tensile loading Compressive loading 

PP Plasticity Plasticity 
cc Creep Creep 
PC Plasticity Creep 
CP Creep Plasticity 
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In the present program, Refs. 7 to 9, both cyclic and supporting monotonic 

tests were conducted on MAR-M200+2%Hf under strain control at constant 

strainrates. Cyclic data on the other materials studied were found in the 

literature, so that only monotonic tests and supporting microscopy were 

required. The emphasis in this paper is on observed mechanical behavior. A 

more extensive discussion of microstructural response can be found in Nadiv 

et al. (Ref. 10). 

CYCLIC AND MONOTONIC DAMAGE MECHANISMS IN MAR-M2OO+Hf 

The initial phase of this research included an extensive mechanical and 

metallographic study of directionally solidified MAR-M200+2%Hf, tested at 

975 "C. 

of strainrates, yielded strainrange-partitioned life data and stress-strain 

data in both the plasticity and creep regimes. 

examination of test specimens revealed the damage mechanisms operating under 

the various strain conditions imposed. 

Strain-controlled cyclic and monotonic tests, conducted over a range 

Subsequent microscopic 

Monotonic Behavior 

The tensile stress-strain response of MAR-M200+Hf material at 975 " C  is 

represented by the curves in Fig. 1 .  Examination o f  the failed test specimens 

revealed three distinct damage mechanisms, depending on the region o f  strain 

and strainrate. 

Beyond the points of maximum true stress the stress-strain curves formed a 

set of more or less parallel, gradually decreasing lines. This region was 

governed by dynamic recovery of the material. 

the maximum stress developed under a given strainrate. 

region was bounded by the fracture strain, which was constant a t  the lower 

strainrates which characterize creep, and decreased somewhat in the 

high-strainrate, plasticity-affected regime. 

It was bounded on the left by 

On the right the 
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Plasticity was the dominant process at strainrates above 0.001 sec-1 in 

the region before the maximum stress was attained for the given strainrate. 

Here the stress-strain relationship was independent of the strainrate at low 

inelastic strain. At these relatively high strainrates, dislocation locking 

akin to strain-aging did not begin to be felt until considerable strain had 

taken place under strain-hardening conditions. In fact, by the time 

strain-aging-like effects could take place in this range they were 

over-shadowed by the recovery process which eventually led to failure. 

lower boundary of the plasticity region was defined by a time-constant, 

controlled by the material diffusion rate. 

The 

Dislocation generation, pile-ups and interactions, causing a hardening 

effect, dominated the low strainrate, low strain region of the stress-strain 

curves. At low strainrates, low to moderate stresses developed due to 

dislocation climb and diffusion processes in the material. 

the low energy levels involved here were over-shadowed until substantial 

strain had been achieved. 

by continuing dislocation locking, with the result that as strainrate decreased 

the strain to achieve a given stress increased, until sufficient strain had 

accumulated so that recovery became the dominant cause of straining. 

Recovery rates at 

The diffusion processes were increasingly inhibited 

Thus an area where time-independent strain occurs at high-strainrates 

prior to initiation of the recovery process, and a region of time-dependent 

deformation at more moderate strainrates, were defined. Time-dependent 

deformation is caused by dynamic recovery in the material, evidenced as 

straining initiated at moderate strainrate and again when failure is 

approached. Between these extremes dislocation locking mechanisms retard 

deformation and lead to transitory hardening of the material. These 

characteristics of monotonic straining have been emphasized because of their 

significance relative to cyclic response. 
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Cyclic Behavior 

The cyclic response curves obtained under symmetrical strain-control 

( R  = -1) were unique functions of loading frequency, which was constant 

throughout each cyclic test. 

hysteresis loops resulted, bounded by common tensile and compressive inelastic 

stress-strain curves, regardless of strain amplitude, for both PP and CC 

tests (Fig. 2 ) .  Furthermore, the plasticity half of CP and PC hysteresis 

loops coincided with PP results, while the creep half matched results 

obtained from CC tests. The fact that the cyclic stress-strain 

relationships did not change as a result of altering the strain amplitude (and 

accordingly the strainrate) at a given test frequency, indicates that little 

or no hardening occurred under cyclic loading, the material remaining almost 

fully recovered and soft. This suggests that radically different 

characteristics were active in the microstructure under cyclic and monotonic 

conditions, before the onset of the cracking and failure phase. 

response under cyclic conditions was noticed previously by Berkovits (Ref. 1 1 )  

for Udimet-700, as well as for 316 stainless steel. 

E 

for a given frequency a single family of 

Similar 

The phenomenon of preserved "softness" of the material under cyclic 

conditions has also been noted by others (Kear and Oblack (Ref. 12)). It i s  

apparently the result of relaxation of dislocation back-stress and pile-up 

during reverse loading, so that, following each load reversal, the material 

responds as if it were virgin material. In this respect, the cyclic response 

i s  quite different from monotonic behavior, a fact which will be important 

when fatigue life prediction is discussed in the next section. 

STRAINRANGE PARTITIONED LIFE PREDICTION 

The crux of the study of constitutive behavior of materials is its use in 

predicting failure. This objective has seldom been achieved (cf. Ross (Ref. 

1 3 ) ) .  Fatigue-life data obtained from MAR-M200+Hf material at 975 " C  will be 
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reviewed as the basis for the proposed method for predicting fatigue life from 

monotonic stress-strain behavior. 

The key to cyclic-creep life prediction is to be 

of the cyclic and monotonic stress-strain response i 

found by interpretation 

terms of the controlli 

deformation process. 

deformation is defined by the negative slope of the stress-strain curves in 

the high-strain region, and by a line which separates the plasticity and 

It was stated previously that recovery-controlled 

dynamic recovery regimes at low strains. 

diffusion energy relation.) The hardening process which occurs at low strains 

can be described as a family of curves emanating from the recovery initiation 

line and intersecting the recovery curves at strains corresponding to the 

maximum stress developed at each strainrate. 

two families of curves which represent the controlling processes, i s  

significant when attention is turned to the cyclic loading case. 

(These curves can be related to the 

The line of intersection of the 

Under cyclic CC loading (Ref. 91, stress ranges above 600 MPa indicated 

some cycl c hardening, while lower stress amplitudes exhibited slight cyclic 

softening 

tests at commensurate strainrates. It is significant that the observed 

hardening and softening rates were such that the cyclic response converged in 

all cases on a state-point defined by a stress-range equal to 600 MPa and a 

corresponding creep strain amplitude of 0.007. 

on the line of maximum stresses for given strainrates (Fig. 31, and on the 

recovery curve for a stress of 600 MPa, may not be coincidental. Failure of 

MAR-M200+Hf at 975 " C  i s  due to the dynamic recovery processes and occurs in 

the creep region at an upper stress limit of approximately 600 MPa. 

recovery mechanism appears to be coarsening of y '  precipitate particles 

(Ref. 10). Although at higher stresses failure occurs after plastic 

deformation, it is still due to recovery. However, here the recovery 

6 
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mechanism is dissolution of y ' ,  and ductility is reduced as a result of the 

earlier plastic deformation. 

developments is given in Ref. (101.) 

(An extensive discussion of the microstructural 

Thus the monotonic stress and inelastic strain coordinates, 600 MPa and 

0.007 respectively, indicated in Fig. 1 ,  are sufficient to define conditions 

leading to failure under the completely relaxed creep cycling, which controls 

CC, CP and PC failure in the directionally solidified MAR-M200+Hf material 

under discussion. (In most Raterials CP and PC damage mechanisms are not 

identical to CC mechanisms, as will be discussed presently.) On this basis, 

a relation of the Universal-Slopes type can be suggested as: 

U -- A& - UCC N-0.12 0.6 -0.6 
2 -  E + &UCC (1) 

where 
uuCc 

is the ultimate time-dependent stress (equal to 600 MPa in 

MAR-M200+Hf at 975 "C), and is the corresponding time-dependent strain 

(equal to 0.007 in MAR-M200+Hf at 975 "0, see Fig. 3 .  

The present contention, that fatigue life is determined by the material 

response at its maximum monotonic strength, before the onset of dynamic 

recovery leading to failure, can be applied to PP data as well. Maximum 

stress under plasticity conditions occurred in the material investigation at 

~ u p p  equal to 900 MPa. The corresponding plastic strain EUPP was 

approximately 0.007, coincidentally the same value as for 

of the constitutive parameters were substituted in a PP relation of the form: 

EUCC. These values 

A& U UPP N-0.12 0.6 -0.6 
+ %PP -- - 

2 -  E ( 2 )  

Lifetime of strainrange parti tioned tests conducted under constant 

strainrates are shown as symbols in Fig. 4. The PP-life results show 

significantly longer lives than CC, PC or CP results. The latter all have 

similar fatigue lives, because there are almost no transverse grain boundary 
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segments t o  a c t  as c r a c k  i n i t i a t i o n  s i t e s  under t e n s i l e  creep c o n d i t i o n s  i n  

t h e  d i r e c t i o n a l l y  s o l i d i f i e d  m a t e r i a l  (Manson and H a l f o r d  ( R e f .  1 4 ) ) .  I n  a l l  

cases d e t e c t a b l e  f a t i g u e  c racks  developed o n l y  d u r i n g  t h e  l a s t  20 p e r c e n t  o f  

the  c y c l i c  t e s t s .  

d u r i n g  which t h e  t e n s i l e  phase was a t  low s t r a i n r a t e  (CC and CP) t han  i n  

those w i t h  h i g h  t e n s i l e  s t r a i n r a t e  (PP and PC).  

Somewhat more o x i d a t i o n  occu r red  on t h e  c rack  f a c e  i n  t e s t s  

C o r r e l a t i o n  o f  c a l c u l a t e d  r e s u l t s  o b t a i n e d  from E q s .  (1 )  and (21, and 

shown as curves i n  F i g .  4, w i t h  CC, CP, PC as w e l l  as PP d a t a  i s  e x c e l l e n t .  

CP AND PC LIFE PREDICTION FOR OTHER MATERIALS 

I n  d i r e c t i o n a l l y  s o l i d i f i e d  MAR-M200+Hf m a t e r i a l ,  CP and PC f a t i g u e  

l i f e  was dominated by t h e  c reep l o a d i n g .  More i m p o r t a n t l y ,  t h e  p l a s t i c i t y  

h a l f  o f  the  s t r a i n  c y c l e  d i d  n o t  s i g n i f i c a n t l y  a f f e c t  t h e  response o f  t h e  

c reep h a l f  o f  t h e  h y s t e r e s i s  l oop .  A s  a r e s u l t ,  t h e  c reep parameters remained 

t h e  c o n t r o l l i n g  f a c t o r s  i n  CP and PC l i f e .  However, i n  o t h e r  m a t e r i a l s  

t h e  e f f e c t  o f  compressive p l a s t i c i t y  on t h e  subsequent t e n s i l e  c reep 

h a l f - c y c l e ,  i n  a CP t e s t ,  and o f  compressive c reep on subsequent t e n s i l e  

p l a s t i c i t y  i n  a PC t e s t ,  must be q u a n t i f i e d  i n  o r d e r  t o  p r e d i c t  CP and 

PC l i f e t i m e s  from t h e  Un iversa l -S lopes  Equat ion .  The a p p r o p r i a t e  va lues  o f  

uu and EU xmay be determined from t h e  t e n s i l e  ;ide o f  o n e - c y c l e - t o - f a i l u r e  

t e s t s ,  i n  which compressive s t r e s s  and s t r a i n  e q u i v a l e n t  t o  t h e  n e g a t i v e  o f  

the  maximum ( P  or C) s t r e s s  and s t r a i n  a r e  a p p l i e d  p r i o r  t o  t e n s i l e  (C or 

P r e s p e c t i v e  

and PC cond 

y)  l o a d i n g  t o  f a i l u r e .  The l i f e - p r e d i c t i o n  r e l a t i o n s  f o r  CP 

t i o n s  then become: 

U A C  UCP N-0.12 0.6 -0.6 
2= E + %CP (3 )  

and 

CY A C  UPC ,,,-0.12 0.6 -0.6 
2= E + €UPC ( 4 )  
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respectively. 

other elevated temperature materials. 

The validity o f  this approach was investigated for a number of 

COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL SRP LIFE 

The key to cyclic life prediction for MAR-M200+Hf at elevated temperature 

was perceived by interpretation of the cyclic and monotonic mechanical 

response in terms of the controlling mircostructural processes. When the 

interaction o f  dynamic recovery and strain-hardening processes was understood 

in terms of the microstructure, a method of life prediction evolved. 

Clearly, in other materials different chemomechanical processes may be 

responsible for strain hardening. However, the significant point is that 

cyclic strength persists as long as the hardening process, whatever its cause, 

dominates the deformation. When the hardening mechanism is superseded by 

recovery processes, both monotonic and cyclic resistance are essentially 

exhausted. Thus the stress and strain parameters obtaining at the point of 

mechanism-change in the monotonic test are also the controlling parameters for 

estimating cyclic life. These parameters are the true stress and the 

corresponding true stra n in the plasticity and creep-range strength tests. 

Evaluating these pa ameters in the plasticity stress-strain curve is 

straight-forward. However, they must also be ascertained for the (unknown) 

strainrate at which the full creep capability of the material is realized. In 

principle the required stress-strain curve is that for which the ultimate 

stress corresponds to the proportional limit stress o f  the plasticity curve. 

In practice, the correct curve may be better determined by taking some small 

plastic strain such as the 0.1 percent offset as the limit, instead of the 

proportional limit (Fig. 1). 

In order to test the val 

critical damage point on the 

life, a comparison was perfo 

dity of the relationship between the perceived 

stress-strain curve and strainrange partitioned 

med for three nickel-base superalloys and a 



stainless steel. Fatigue life data were taken from the literature for the 

following materials: AF2-1DA at 760 "C, Saltsman and Halford (Ref. 6); 

Udimet-700 at 760 "C, Berkovits (Ref. 1 5 ) ;  S.S.  316 at 705 "C, Hirschberg and 

Halford (Ref. 16). 

For each material a series of six stress-strain tests were conducted under 

strain control at the appropriate temperature. The six tests consisted of: 

1 .  High-strainrate test to define p1asticit.y parameters; 

2. Moderate-strainrate tests to define the creep region upper bound; 

3. One-cycle-to-failure tests (one CP, one PC). Strainrates and 

compressive strain limit were as defined by the previous tests, so that 

appropriate &U-strains were achieved in compression, and creep-phase 

strainrates were at the plasticitylcreep boundary. 

Fractography performed on two o f  the materials tested (Figs. 5 and 6) 

indicated that the failure-surface characteristics of the 

one-cycle-to-failure CP and PC tests corresponded to those of the tensile 

creep-range and plasticity-range failures respectively. Stress-strain curves 

for the materials tested are presented in Fig. 7, and parameters used in order 

to define the plasticitylcreep boundary are shown in Fig. 8.  Values of stress 

and strain parameters obtained from these tests f w  use in the life-prediction 

Eqs. (1) to ( 4 )  are tabulated in Table 1.  Values for MAR-M200+Hf are also 

included for completeness. Total strainrange against lifetime curves for the 

four materials calculated with the aid of Table 1 are compared with 

experimental da a in Figs. 4 and 9. In general the correlation supports the 

proposed method Results of the comparison indicate that parameters required 

for Universal-S opes prediction of SRP lifetimes can be evaluated from 

critical damage points of monotonic stress-strain data. 
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CONCLUSION 

A metallographic study of the correlation between SRP fatigue damage 

mechanisms, and deformation mechanisms operating in the early stages of 

monotonic plastic and creep ductility at elevated temperatures, evolved a 

method of evaluating material parameters for Universal-Slopes prediction of 

fatigue life. Besides the elastic modulus of the material, the required 

parameters are the maximum true stress and corresponding inelastic strain 

under the four strainrange partitioning conditions. These conditions include 

the strainrates which produce entirely plastic and upper creep-boundary 

deformations, and two one-cycle-to-failure cases which define plasticitylcreep 

interactions. 

few as six stress-strain tests. 

Comparison of predicted lifetimes with experimentally determined fatigue 

The parameters can be evaluated at a given temperature by as 

lives for four elevated temperature materials demonstrated that the principles 

on which the prediction method is based are sound. 
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TABLE 1 .  - STRESS-STRAIN PARAMETERS FOR PREDICTION OF 

SRP FROM UNIVERAL-SLOPES EQUATION 

~~ 

T e m p e r a t u r e ,  C 
E, MPa 
uUpp. MPa 

%PP 

EUCC 

%CP 

V P C  

ouCc, MPa 

uuCp, MPa 

ouPc, MPa 

P a r a m e t e r  

MAR-M200 

975 
81 700 

900 
0.007 

600 
0.007 

600 
0.007 

600 
0.007 

looor STRAIN RATE, 

M a t e r i  a 1  

AF2-1 DA 

7 60 
161 600 

1 041 
0.006 

965 
0.005 

834 
0.01 1 5  

1 062 
0.02 

8oo 

G Oucc- . 61 

U-700 

7 60 
162 700 

1 320 
0.122 
1 060 
0.135 

950 
0.036 
1 320 
0.122 

S . S .  316 

705 
1 1 1  000 

300 
0.080 

300 
0.080 

300 
0.020 

300 
0.020 

I I I I I 
0 .04 .08 ,012 .016 .020 .024 

TRUE STRAIN 
FIGURE 1. - TENSILE PROPERTIES OF MAR-M200+Hf AT 975 OC. 
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-600 -.008 -.004 0 .004 .008 
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FIGURE 2.  - HYSTERESIS LOOPS FOR MAR- 
M 2 W H f  AT 760 OC. 

1000 

3 600 
x 400 

200 
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D 

I I I I I I I  I I 1  I I I I  

I I I I IIIII I I 1 1 1 1 1 1 1  I I I I11111 I I I I I I111 I I I I 1 1 1 1 1  
10-6 10-5  IO-^ 10-3 10-2 10-1 

-02 

STRAIN RATE, SEC-' 

FIGURE 3. - MATERIAL PARAMETERS FOR NAR-M200+Hf AT 975 'C. 
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I- 
O 

0 cc 
0 PP 
A PC 
0 cp 

UNIVERSAL SLOPES 

,004 I I I I I 
101 102 103 I 04 1 o5 106 

CYCLES TO FAILURE 

FIGURE 4. - SRP LIFETIME OF MAR-1200-Hf AT 975 'C. 

( B )  CREEP-RANGE. (A) PLASTIC. 

(C) ONE-CYCLE-TO-FAILURE PC. (D) ONE-CYCLE-TO-FAILURE CP. 

FIGURE 5 .  - TENSILE-TEST FAILURES OF AF2-IDA NICKEL ALLOY AT 760 OC. 
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( A )  PLASTIC. 

( C )  ONE-CYCLE-TO-FAILURE PC. 

(B)  CREEP-RANGE. 

(D) ONE-CYCLE-TO-FAILURE CP. 

FIGURE 6 .  - TENSILE-TEST FAILURES OF STAINLESS STEEL 316 AT 705 OC. 

ORIGINAL PAGE IS 
OF POOR Q U A L m  
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i .  SEC-1 
- 

1 . 8 ~ 1 0 - ~  1-CYCLE PC 

2 . 6 ~ 1 0 - ~  
\ 

L2.4x10-5 1-CYCLE CP 

1200 

a 

800 
* * 
W oc 
I- 

W 2 
z 
I- 

* 4oa 

O ,004 ,008 .012 ,016 
( A )  AF2-1DA NICKEL ALLOY AT 760 'C. 

l6O0 r 1. S K - 1  

W 

1 I I J 
0 .08 .16 .24 .32 

(B) UDIMET-700 NICKEL ALLOY AT 760 'C. 

1,  s c - 1  ,Oar 2.1x10-4- 
a 
B 
* * 
W z 
c v) 

W 
T3 
E 

0 -08 .16 .24 - 3 2  
TRUE STRAIN 

( C )  STAINLESS STEEL 316 AT 705 'C. 

FIGURE 7 .  - TENSILE STRESS-STRAIN CURVES. 
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.02 

,006 :: - 0 1  

(A) AF2-IDA NICKEL ALLOY AT 760 O C .  

10 
6 
4 

2 

1 

000 
0 MAXIMUM STRESS 
0 FLOW STRESS 

000 

@ 

. I  

(B) UDIMET-700 NICKEL ALLOY AT 760 OC. 

600 r 

a 2  r ;L a02 .01 

10-6 10-5 10-4 10-3 

200 

100 !E 
60 
40 E 

W 

20 5 
10 

10-2 

STRAIN RATE. SEC-' 

( C )  STAINLESS STEEL 316 AT 705 OC. 
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